3.1.92 \(\int \frac {1-\sqrt {3}-x}{\sqrt {1-x^3}} \, dx\) [92]

3.1.92.1 Optimal result
3.1.92.2 Mathematica [C] (verified)
3.1.92.3 Rubi [A] (verified)
3.1.92.4 Maple [C] (verified)
3.1.92.5 Fricas [C] (verification not implemented)
3.1.92.6 Sympy [A] (verification not implemented)
3.1.92.7 Maxima [F]
3.1.92.8 Giac [F]
3.1.92.9 Mupad [B] (verification not implemented)

3.1.92.1 Optimal result

Integrand size = 24, antiderivative size = 142 \[ \int \frac {1-\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=-\frac {2 \sqrt {1-x^3}}{1+\sqrt {3}-x}+\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}} \]

output
-2*(-x^3+1)^(1/2)/(1-x+3^(1/2))+3^(1/4)*(1-x)*EllipticE((1-x-3^(1/2))/(1-x 
+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2+x+1)/(1-x+3^(1/2) 
)^2)^(1/2)/(-x^3+1)^(1/2)/((1-x)/(1-x+3^(1/2))^2)^(1/2)
 
3.1.92.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.32 \[ \int \frac {1-\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=\left (1-\sqrt {3}\right ) x \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},x^3\right )-\frac {1}{2} x^2 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},x^3\right ) \]

input
Integrate[(1 - Sqrt[3] - x)/Sqrt[1 - x^3],x]
 
output
(1 - Sqrt[3])*x*Hypergeometric2F1[1/3, 1/2, 4/3, x^3] - (x^2*Hypergeometri 
c2F1[1/2, 2/3, 5/3, x^3])/2
 
3.1.92.3 Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-x-\sqrt {3}+1}{\sqrt {1-x^3}} \, dx\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2 \sqrt {1-x^3}}{-x+\sqrt {3}+1}\)

input
Int[(1 - Sqrt[3] - x)/Sqrt[1 - x^3],x]
 
output
(-2*Sqrt[1 - x^3])/(1 + Sqrt[3] - x) + (3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 - x)* 
Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] - x) 
/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*S 
qrt[1 - x^3])
 

3.1.92.3.1 Defintions of rubi rules used

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
3.1.92.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 1.61 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.30

method result size
meijerg \(x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};x^{3}\right )-\frac {x^{2} {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{2},\frac {2}{3};\frac {5}{3};x^{3}\right )}{2}-\sqrt {3}\, x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};x^{3}\right )\) \(42\)
elliptic \(-\frac {2 i \left (1-\sqrt {3}\right ) \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}+\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) E\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )+F\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}+1}}\) \(272\)
default \(-\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}+\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) E\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )+F\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}+1}}+\frac {2 i \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-x^{3}+1}}\) \(368\)

input
int((1-x-3^(1/2))/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
x*hypergeom([1/3,1/2],[4/3],x^3)-1/2*x^2*hypergeom([1/2,2/3],[5/3],x^3)-3^ 
(1/2)*x*hypergeom([1/3,1/2],[4/3],x^3)
 
3.1.92.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.16 \[ \int \frac {1-\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=-2 \, {\left (-i \, \sqrt {3} + i\right )} {\rm weierstrassPInverse}\left (0, 4, x\right ) - 2 i \, {\rm weierstrassZeta}\left (0, 4, {\rm weierstrassPInverse}\left (0, 4, x\right )\right ) \]

input
integrate((1-x-3^(1/2))/(-x^3+1)^(1/2),x, algorithm="fricas")
 
output
-2*(-I*sqrt(3) + I)*weierstrassPInverse(0, 4, x) - 2*I*weierstrassZeta(0, 
4, weierstrassPInverse(0, 4, x))
 
3.1.92.6 Sympy [A] (verification not implemented)

Time = 1.22 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.68 \[ \int \frac {1-\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=- \frac {x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {5}{3}\right )} - \frac {\sqrt {3} x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} + \frac {x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} \]

input
integrate((1-x-3**(1/2))/(-x**3+1)**(1/2),x)
 
output
-x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), x**3*exp_polar(2*I*pi))/(3*gamm 
a(5/3)) - sqrt(3)*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(2* 
I*pi))/(3*gamma(4/3)) + x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_po 
lar(2*I*pi))/(3*gamma(4/3))
 
3.1.92.7 Maxima [F]

\[ \int \frac {1-\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=\int { -\frac {x + \sqrt {3} - 1}{\sqrt {-x^{3} + 1}} \,d x } \]

input
integrate((1-x-3^(1/2))/(-x^3+1)^(1/2),x, algorithm="maxima")
 
output
-integrate((x + sqrt(3) - 1)/sqrt(-x^3 + 1), x)
 
3.1.92.8 Giac [F]

\[ \int \frac {1-\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=\int { -\frac {x + \sqrt {3} - 1}{\sqrt {-x^{3} + 1}} \,d x } \]

input
integrate((1-x-3^(1/2))/(-x^3+1)^(1/2),x, algorithm="giac")
 
output
integrate(-(x + sqrt(3) - 1)/sqrt(-x^3 + 1), x)
 
3.1.92.9 Mupad [B] (verification not implemented)

Time = 9.15 (sec) , antiderivative size = 343, normalized size of antiderivative = 2.42 \[ \int \frac {1-\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=-\sqrt {3}\,x\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{3},\frac {1}{2};\ \frac {4}{3};\ x^3\right )+\frac {6\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {6\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

input
int(-(x + 3^(1/2) - 1)/(1 - x^3)^(1/2),x)
 
output
(6*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1 
/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/(( 
3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticE(asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2 
))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/((1 - x^3)^(1/ 
2)*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1 
/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2)) - 3^(1/2)*x*hypergeom([1/3, 
1/2], 4/3, x^3) - (6*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2 
)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^ 
(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x - 1)/((3 
^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2 
)))/((1 - x^3)^(1/2)*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(( 
(3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2))